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Preface
Artificial Intelligence (AI) is a big field, and this is a big book. We have tried to explore
the full breadth of the field, which encompasses logic, probability, and continuous mathemat-
ics; perception, reasoning, learning, and action; fairness, trust, social good, and safety; and
applications that range from microelectronic devices to robotic planetary explorers to online
services with billions of users.

The subtitle of this book is “A Modern Approach.” That means we have chosen to tell
the story from a current perspective. We synthesize what is now known into a common
framework, recasting early work using the ideas and terminology that are prevalent today.
We apologize to those whose subfields are, as a result, less recognizable.

New to this edition

This edition reflects the changes in AI since the last edition in 2010:

• We focus more on machine learning rather than hand-crafted knowledge engineering,
due to the increased availability of data, computing resources, and new algorithms.

• Deep learning, probabilistic programming, and multiagent systems receive expanded
coverage, each with their own chapter.

• The coverage of natural language understanding, robotics, and computer vision has
been revised to reflect the impact of deep learning.

• The robotics chapter now includes robots that interact with humans and the application
of reinforcement learning to robotics.

• Previously we defined the goal of AI as creating systems that try to maximize expected
utility, where the specific utility information—the objective—is supplied by the human
designers of the system. Now we no longer assume that the objective is fixed and known
by the AI system; instead, the system may be uncertain about the true objectives of the
humans on whose behalf it operates. It must learn what to maximize and must function
appropriately even while uncertain about the objective.

• We increase coverage of the impact of AI on society, including the vital issues of ethics,
fairness, trust, and safety.

• We have moved the exercises from the end of each chapter to an online site. This
allows us to continuously add to, update, and improve the exercises, to meet the needs
of instructors and to reflect advances in the field and in AI-related software tools.

• Overall, about 25% of the material in the book is brand new. The remaining 75% has
been largely rewritten to present a more unified picture of the field. 22% of the citations
in this edition are to works published after 2010.

Overview of the book

The main unifying theme is the idea of an intelligent agent. We define AI as the study of
agents that receive percepts from the environment and perform actions. Each such agent
implements a function that maps percept sequences to actions, and we cover different ways
to represent these functions, such as reactive agents, real-time planners, decision-theoretic
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8 Preface

systems, and deep learning systems. We emphasize learning both as a construction method
for competent systems and as a way of extending the reach of the designer into unknown
environments. We treat robotics and vision not as independently defined problems, but as
occurring in the service of achieving goals. We stress the importance of the task environment
in determining the appropriate agent design.

Our primary aim is to convey the ideas that have emerged over the past seventy years
of AI research and the past two millennia of related work. We have tried to avoid exces-
sive formality in the presentation of these ideas, while retaining precision. We have included
mathematical formulas and pseudocode algorithms to make the key ideas concrete; mathe-
matical concepts and notation are described in Appendix A and our pseudocode is described
in Appendix B.

This book is primarily intended for use in an undergraduate course or course sequence.
The book has 29 chapters, each requiring about a week’s worth of lectures, so working
through the whole book requires a two-semester sequence. A one-semester course can use
selected chapters to suit the interests of the instructor and students. The book can also be
used in a graduate-level course (perhaps with the addition of some of the primary sources
suggested in the bibliographical notes), or for self-study or as a reference.

Throughout the book, important points are marked with a triangle icon in the margin.I
Wherever a new term is defined, it is also noted in the margin. Subsequent significant usesTerm

of the term are in bold, but not in the margin. We have included a comprehensive index and
an extensive bibliography.

The only prerequisite is familiarity with basic concepts of computer science (algorithms,
data structures, complexity) at a sophomore level. Freshman calculus and linear algebra are
useful for some of the topics.

Online resources

Online resources are available through pearsonglobaleditions.com. There you will find:

• Exercises, programming projects, and research projects. These are no longer at the end
of each chapter; they are online only. Within the book, we refer to an online exercise
with a name like “Exercise 6.NARY.” Instructions on the Web site allow you to find
exercises by name or by topic.

• Implementations of the algorithms in the book in Python, Java, and other programming
languages.

• Supplementary material and links for students and instructors.
• Instructions on how to report errors in the book in the likely event that some exist.

Book cover

The cover depicts the final position from the decisive game 6 of the 1997 chess match in
which the program Deep Blue defeated Garry Kasparov (playing Black), making this the first
time a computer had beaten a world champion in a chess match. Kasparov is shown at the
top. To his right is a pivotal position from the second game of the historic Go match be-
tween former world champion Lee Sedol and DeepMind’s ALPHAGO program. Move 37 by
ALPHAGO violated centuries of Go orthodoxy and was immediately seen by human experts
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Preface 9

as an embarrassing mistake, but it turned out to be a winning move. At top left is an Atlas
humanoid robot built by Boston Dynamics. A depiction of a self-driving car sensing its en-
vironment appears between Ada Lovelace, the world’s first computer programmer, and Alan
Turing, whose fundamental work defined artificial intelligence. At the bottom of the chess
board are a Mars Exploration Rover robot and a statue of Aristotle, who pioneered the study
of logic; his planning algorithm from De Motu Animalium appears behind the authors’ names.
Behind the chess board is a probabilistic programming model used by the UN Comprehensive
Nuclear-Test-Ban Treaty Organization for detecting nuclear explosions from seismic signals.
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CHAPTER 1
INTRODUCTION
In which we try to explain why we consider artificial intelligence to be a subject most
worthy of study, and in which we try to decide what exactly it is, this being a good thing to
decide before embarking.

We call ourselves Homo sapiens—man the wise—because our intelligence is so important Intelligence

to us. For thousands of years, we have tried to understand how we think and act—that is,
how our brain, a mere handful of matter, can perceive, understand, predict, and manipulate a
world far larger and more complicated than itself. The field of artificial intelligence, or AI, Artificial intelligence

is concerned with not just understanding but also building intelligent entities—machines that
can compute how to act effectively and safely in a wide variety of novel situations.

Surveys regularly rank AI as one of the most interesting and fastest-growing fields, and it
is already generating over a trillion dollars a year in revenue. AI expert Kai-Fu Lee predicts
that its impact will be “more than anything in the history of mankind.” Moreover, the intel-
lectual frontiers of AI are wide open. Whereas a student of an older science such as physics
might feel that the best ideas have already been discovered by Galileo, Newton, Curie, Ein-
stein, and the rest, AI still has many openings for full-time masterminds.

AI currently encompasses a huge variety of subfields, ranging from the general (learning,
reasoning, perception, and so on) to the specific, such as playing chess, proving mathemat-
ical theorems, writing poetry, driving a car, or diagnosing diseases. AI is relevant to any
intellectual task; it is truly a universal field.

1.1 What Is AI?

We have claimed that AI is interesting, but we have not said what it is. Historically, re-
searchers have pursued several different versions of AI. Some have defined intelligence in
terms of fidelity to human performance, while others prefer an abstract, formal definition of
intelligence called rationality—loosely speaking, doing the “right thing.” The subject matter Rationality

itself also varies: some consider intelligence to be a property of internal thought processes
and reasoning, while others focus on intelligent behavior, an external characterization.1

From these two dimensions—human vs. rational2 and thought vs. behavior—there are
four possible combinations, and there have been adherents and research programs for all

1 In the public eye, there is sometimes confusion between the terms “artificial intelligence” and “machine learn-
ing.” Machine learning is a subfield of AI that studies the ability to improve performance based on experience.
Some AI systems use machine learning methods to achieve competence, but some do not.
2 We are not suggesting that humans are “irrational” in the dictionary sense of “deprived of normal mental
clarity.” We are merely conceding that human decisions are not always mathematically perfect.
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four. The methods used are necessarily different: the pursuit of human-like intelligence must
be in part an empirical science related to psychology, involving observations and hypotheses
about actual human behavior and thought processes; a rationalist approach, on the other hand,
involves a combination of mathematics and engineering, and connects to statistics, control
theory, and economics. The various groups have both disparaged and helped each other. Let
us look at the four approaches in more detail.

1.1.1 Acting humanly: The Turing test approach

The Turing test, proposed by Alan Turing (1950), was designed as a thought experiment thatTuring test

would sidestep the philosophical vagueness of the question “Can a machine think?” A com-
puter passes the test if a human interrogator, after posing some written questions, cannot tell
whether the written responses come from a person or from a computer. Chapter 28 discusses
the details of the test and whether a computer would really be intelligent if it passed. For
now, we note that programming a computer to pass a rigorously applied test provides plenty
to work on. The computer would need the following capabilities:

• natural language processing to communicate successfully in a human language;Natural language
processing

• knowledge representation to store what it knows or hears;Knowledge
representation

• automated reasoning to answer questions and to draw new conclusions;Automated
reasoning

• machine learning to adapt to new circumstances and to detect and extrapolate patterns.
Machine learning

Turing viewed the physical simulation of a person as unnecessary to demonstrate intelligence.
However, other researchers have proposed a total Turing test, which requires interaction withTotal Turing test

objects and people in the real world. To pass the total Turing test, a robot will need

• computer vision and speech recognition to perceive the world;Computer vision

• robotics to manipulate objects and move about.Robotics

These six disciplines compose most of AI. Yet AI researchers have devoted little effort to
passing the Turing test, believing that it is more important to study the underlying princi-
ples of intelligence. The quest for “artificial flight” succeeded when engineers and inventors
stopped imitating birds and started using wind tunnels and learning about aerodynamics.
Aeronautical engineering texts do not define the goal of their field as making “machines that
fly so exactly like pigeons that they can fool even other pigeons.”

1.1.2 Thinking humanly: The cognitive modeling approach

To say that a program thinks like a human, we must know how humans think. We can learn
about human thought in three ways:

• introspection—trying to catch our own thoughts as they go by;Introspection

• psychological experiments—observing a person in action;Psychological
experiment

• brain imaging—observing the brain in action.Brain imaging

Once we have a sufficiently precise theory of the mind, it becomes possible to express the
theory as a computer program. If the program’s input–output behavior matches correspond-
ing human behavior, that is evidence that some of the program’s mechanisms could also be
operating in humans.

For example, Allen Newell and Herbert Simon, who developed GPS, the “General Prob-
lem Solver” (Newell and Simon, 1961), were not content merely to have their program solve
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problems correctly. They were more concerned with comparing the sequence and timing of
its reasoning steps to those of human subjects solving the same problems. The interdisci-
plinary field of cognitive science brings together computer models from AI and experimental Cognitive science

techniques from psychology to construct precise and testable theories of the human mind.
Cognitive science is a fascinating field in itself, worthy of several textbooks and at least

one encyclopedia (Wilson and Keil, 1999). We will occasionally comment on similarities or
differences between AI techniques and human cognition. Real cognitive science, however, is
necessarily based on experimental investigation of actual humans or animals. We will leave
that for other books, as we assume the reader has only a computer for experimentation.

In the early days of AI there was often confusion between the approaches. An author
would argue that an algorithm performs well on a task and that it is therefore a good model
of human performance, or vice versa. Modern authors separate the two kinds of claims; this
distinction has allowed both AI and cognitive science to develop more rapidly. The two fields
fertilize each other, most notably in computer vision, which incorporates neurophysiological
evidence into computational models. Recently, the combination of neuroimaging methods
combined with machine learning techniques for analyzing such data has led to the beginnings
of a capability to “read minds”—that is, to ascertain the semantic content of a person’s inner
thoughts. This capability could, in turn, shed further light on how human cognition works.

1.1.3 Thinking rationally: The “laws of thought” approach

The Greek philosopher Aristotle was one of the first to attempt to codify “right thinking”—
that is, irrefutable reasoning processes. His syllogisms provided patterns for argument struc- Syllogism

tures that always yielded correct conclusions when given correct premises. The canonical
example starts with Socrates is a man and all men are mortal and concludes that Socrates is
mortal. (This example is probably due to Sextus Empiricus rather than Aristotle.) These laws
of thought were supposed to govern the operation of the mind; their study initiated the field
called logic.

Logicians in the 19th century developed a precise notation for statements about objects
in the world and the relations among them. (Contrast this with ordinary arithmetic notation,
which provides only for statements about numbers.) By 1965, programs could, in principle,
solve any solvable problem described in logical notation. The so-called logicist tradition Logicist

within artificial intelligence hopes to build on such programs to create intelligent systems.
Logic as conventionally understood requires knowledge of the world that is certain—

a condition that, in reality, is seldom achieved. We simply don’t know the rules of, say,
politics or warfare in the same way that we know the rules of chess or arithmetic. The theory
of probability fills this gap, allowing rigorous reasoning with uncertain information. In Probability

principle, it allows the construction of a comprehensive model of rational thought, leading
from raw perceptual information to an understanding of how the world works to predictions
about the future. What it does not do, is generate intelligent behavior. For that, we need a
theory of rational action. Rational thought, by itself, is not enough.

1.1.4 Acting rationally: The rational agent approach

An agent is just something that acts (agent comes from the Latin agere, to do). Of course, Agent

all computer programs do something, but computer agents are expected to do more: operate
autonomously, perceive their environment, persist over a prolonged time period, adapt to
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change, and create and pursue goals. A rational agent is one that acts so as to achieve theRational agent

best outcome or, when there is uncertainty, the best expected outcome.
In the “laws of thought” approach to AI, the emphasis was on correct inferences. Mak-

ing correct inferences is sometimes part of being a rational agent, because one way to act
rationally is to deduce that a given action is best and then to act on that conclusion. On the
other hand, there are ways of acting rationally that cannot be said to involve inference. For
example, recoiling from a hot stove is a reflex action that is usually more successful than a
slower action taken after careful deliberation.

All the skills needed for the Turing test also allow an agent to act rationally. Knowledge
representation and reasoning enable agents to reach good decisions. We need to be able to
generate comprehensible sentences in natural language to get by in a complex society. We
need learning not only for erudition, but also because it improves our ability to generate
effective behavior, especially in circumstances that are new.

The rational-agent approach to AI has two advantages over the other approaches. First, it
is more general than the “laws of thought” approach because correct inference is just one of
several possible mechanisms for achieving rationality. Second, it is more amenable to scien-
tific development. The standard of rationality is mathematically well defined and completely
general. We can often work back from this specification to derive agent designs that provably
achieve it—something that is largely impossible if the goal is to imitate human behavior or
thought processes.

For these reasons, the rational-agent approach to AI has prevailed throughout most of
the field’s history. In the early decades, rational agents were built on logical foundations
and formed definite plans to achieve specific goals. Later, methods based on probability
theory and machine learning allowed the creation of agents that could make decisions under
uncertainty to attain the best expected outcome. In a nutshell, AI has focused on the studyI
and construction of agents that do the right thing. What counts as the right thing is definedDo the right thing

by the objective that we provide to the agent. This general paradigm is so pervasive that we
might call it the standard model. It prevails not only in AI, but also in control theory, where aStandard model

controller minimizes a cost function; in operations research, where a policy maximizes a sum
of rewards; in statistics, where a decision rule minimizes a loss function; and in economics,
where a decision maker maximizes utility or some measure of social welfare.

We need to make one important refinement to the standard model to account for the fact
that perfect rationality—always taking the exactly optimal action—is not feasible in complex
environments. The computational demands are just too high. Chapters 6 and 16 deal with the
issue of limited rationality—acting appropriately when there is not enough time to do allLimited rationality

the computations one might like. However, perfect rationality often remains a good starting
point for theoretical analysis.

1.1.5 Beneficial machines

The standard model has been a useful guide for AI research since its inception, but it is
probably not the right model in the long run. The reason is that the standard model assumes
that we will supply a fully specified objective to the machine.

For an artificially defined task such as chess or shortest-path computation, the task comes
with an objective built in—so the standard model is applicable. As we move into the real
world, however, it becomes more and more difficult to specify the objective completely and
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correctly. For example, in designing a self-driving car, one might think that the objective is
to reach the destination safely. But driving along any road incurs a risk of injury due to other
errant drivers, equipment failure, and so on; thus, a strict goal of safety requires staying in the
garage. There is a tradeoff between making progress towards the destination and incurring a
risk of injury. How should this tradeoff be made? Furthermore, to what extent can we allow
the car to take actions that would annoy other drivers? How much should the car moderate
its acceleration, steering, and braking to avoid shaking up the passenger? These kinds of
questions are difficult to answer a priori. They are particularly problematic in the general
area of human–robot interaction, of which the self-driving car is one example.

The problem of achieving agreement between our true preferences and the objective we
put into the machine is called the value alignment problem: the values or objectives put into Value alignment

problem

the machine must be aligned with those of the human. If we are developing an AI system in
the lab or in a simulator—as has been the case for most of the field’s history—there is an easy
fix for an incorrectly specified objective: reset the system, fix the objective, and try again.
As the field progresses towards increasingly capable intelligent systems that are deployed
in the real world, this approach is no longer viable. A system deployed with an incorrect
objective will have negative consequences. Moreover, the more intelligent the system, the
more negative the consequences.

Returning to the apparently unproblematic example of chess, consider what happens if
the machine is intelligent enough to reason and act beyond the confines of the chessboard.
In that case, it might attempt to increase its chances of winning by such ruses as hypnotiz-
ing or blackmailing its opponent or bribing the audience to make rustling noises during its
opponent’s thinking time.3 It might also attempt to hijack additional computing power for
itself. These behaviors are not “unintelligent” or “insane”; they are a logical consequence J
of defining winning as the sole objective for the machine.

It is impossible to anticipate all the ways in which a machine pursuing a fixed objective
might misbehave. There is good reason, then, to think that the standard model is inadequate.
We don’t want machines that are intelligent in the sense of pursuing their objectives; we want
them to pursue our objectives. If we cannot transfer those objectives perfectly to the machine,
then we need a new formulation—one in which the machine is pursuing our objectives, but
is necessarily uncertain as to what they are. When a machine knows that it doesn’t know the
complete objective, it has an incentive to act cautiously, to ask permission, to learn more about
our preferences through observation, and to defer to human control. Ultimately, we want
agents that are provably beneficial to humans. We will return to this topic in Section 1.5. Provably beneficial

1.2 The Foundations of Artificial Intelligence

In this section, we provide a brief history of the disciplines that contributed ideas, viewpoints,
and techniques to AI. Like any history, this one concentrates on a small number of people,
events, and ideas and ignores others that also were important. We organize the history around
a series of questions. We certainly would not wish to give the impression that these questions
are the only ones the disciplines address or that the disciplines have all been working toward
AI as their ultimate fruition.
3 In one of the first books on chess, Ruy Lopez (1561) wrote, “Always place the board so the sun is in your
opponent’s eyes.”
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1.2.1 Philosophy

• Can formal rules be used to draw valid conclusions?

• How does the mind arise from a physical brain?

• Where does knowledge come from?

• How does knowledge lead to action?

Aristotle (384–322 BCE) was the first to formulate a precise set of laws governing the rational
part of the mind. He developed an informal system of syllogisms for proper reasoning, which
in principle allowed one to generate conclusions mechanically, given initial premises.

Ramon Llull (c. 1232–1315) devised a system of reasoning published as Ars Magna or
The Great Art (1305). Llull tried to implement his system using an actual mechanical device:
a set of paper wheels that could be rotated into different permutations.

Around 1500, Leonardo da Vinci (1452–1519) designed but did not build a mechanical
calculator; recent reconstructions have shown the design to be functional. The first known
calculating machine was constructed around 1623 by the German scientist Wilhelm Schickard
(1592–1635). Blaise Pascal (1623–1662) built the Pascaline in 1642 and wrote that it “pro-
duces effects which appear nearer to thought than all the actions of animals.” Gottfried Wil-
helm Leibniz (1646–1716) built a mechanical device intended to carry out operations on
concepts rather than numbers, but its scope was rather limited. In his 1651 book Leviathan,
Thomas Hobbes (1588–1679) suggested the idea of a thinking machine, an “artificial animal”
in his words, arguing “For what is the heart but a spring; and the nerves, but so many strings;
and the joints, but so many wheels.” He also suggested that reasoning was like numerical
computation: “For ‘reason’ . . . is nothing but ‘reckoning,’ that is adding and subtracting.”

It’s one thing to say that the mind operates, at least in part, according to logical or nu-
merical rules, and to build physical systems that emulate some of those rules. It’s another to
say that the mind itself is such a physical system. René Descartes (1596–1650) gave the first
clear discussion of the distinction between mind and matter. He noted that a purely physical
conception of the mind seems to leave little room for free will. If the mind is governed en-
tirely by physical laws, then it has no more free will than a rock “deciding” to fall downward.
Descartes was a proponent of dualism. He held that there is a part of the human mind (orDualism

soul or spirit) that is outside of nature, exempt from physical laws. Animals, on the other
hand, did not possess this dual quality; they could be treated as machines.

An alternative to dualism is materialism, which holds that the brain’s operation accord-
ing to the laws of physics constitutes the mind. Free will is simply the way that the perception
of available choices appears to the choosing entity. The terms physicalism and naturalism
are also used to describe this view that stands in contrast to the supernatural.

Given a physical mind that manipulates knowledge, the next problem is to establish the
source of knowledge. The empiricism movement, starting with Francis Bacon’s (1561–1626)Empiricism

Novum Organum,4 is characterized by a dictum of John Locke (1632–1704): “Nothing is in
the understanding, which was not first in the senses.”

David Hume’s (1711–1776) A Treatise of Human Nature (Hume, 1739) proposed what
is now known as the principle of induction: that general rules are acquired by exposure toInduction

repeated associations between their elements.

4 The Novum Organum is an update of Aristotle’s Organon, or instrument of thought.
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Building on the work of Ludwig Wittgenstein (1889–1951) and Bertrand Russell (1872–
1970), the famous Vienna Circle (Sigmund, 2017), a group of philosophers and mathemati-
cians meeting in Vienna in the 1920s and 1930s, developed the doctrine of logical positivism. Logical positivism

This doctrine holds that all knowledge can be characterized by logical theories connected, ul-
timately, to observation sentences that correspond to sensory inputs; thus logical positivism Observation

sentence
combines rationalism and empiricism.

The confirmation theory of Rudolf Carnap (1891–1970) and Carl Hempel (1905–1997) Confirmation theory

attempted to analyze the acquisition of knowledge from experience by quantifying the degree
of belief that should be assigned to logical sentences based on their connection to observations
that confirm or disconfirm them. Carnap’s book The Logical Structure of the World (1928)
was perhaps the first theory of mind as a computational process.

The final element in the philosophical picture of the mind is the connection between
knowledge and action. This question is vital to AI because intelligence requires action as well
as reasoning. Moreover, only by understanding how actions are justified can we understand
how to build an agent whose actions are justifiable (or rational).

Aristotle argued (in De Motu Animalium) that actions are justified by a logical connection
between goals and knowledge of the action’s outcome:

But how does it happen that thinking is sometimes accompanied by action and sometimes
not, sometimes by motion, and sometimes not? It looks as if almost the same thing
happens as in the case of reasoning and making inferences about unchanging objects. But
in that case the end is a speculative proposition . . . whereas here the conclusion which
results from the two premises is an action. . . . I need covering; a cloak is a covering. I
need a cloak. What I need, I have to make; I need a cloak. I have to make a cloak. And
the conclusion, the “I have to make a cloak,” is an action.

In the Nicomachean Ethics (Book III. 3, 1112b), Aristotle further elaborates on this topic,
suggesting an algorithm:

We deliberate not about ends, but about means. For a doctor does not deliberate whether
he shall heal, nor an orator whether he shall persuade, . . . They assume the end and con-
sider how and by what means it is attained, and if it seems easily and best produced
thereby; while if it is achieved by one means only they consider how it will be achieved
by this and by what means this will be achieved, till they come to the first cause, . . . and
what is last in the order of analysis seems to be first in the order of becoming. And if we
come on an impossibility, we give up the search, e.g., if we need money and this cannot
be got; but if a thing appears possible we try to do it.

Aristotle’s algorithm was implemented 2300 years later by Newell and Simon in their Gen-
eral Problem Solver program. We would now call it a greedy regression planning system
(see Chapter 11). Methods based on logical planning to achieve definite goals dominated the
first few decades of theoretical research in AI.

Thinking purely in terms of actions achieving goals is often useful but sometimes inap-
plicable. For example, if there are several different ways to achieve a goal, there needs to be
some way to choose among them. More importantly, it may not be possible to achieve a goal
with certainty, but some action must still be taken. How then should one decide? Antoine Ar-
nauld (1662), analyzing the notion of rational decisions in gambling, proposed a quantitative
formula for maximizing the expected monetary value of the outcome. Later, Daniel Bernoulli
(1738) introduced the more general notion of utility to capture the internal, subjective value Utility
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of an outcome. The modern notion of rational decision making under uncertainty involves
maximizing expected utility, as explained in Chapter 15.

In matters of ethics and public policy, a decision maker must consider the interests of
multiple individuals. Jeremy Bentham (1823) and John Stuart Mill (1863) promoted the idea
of utilitarianism: that rational decision making based on maximizing utility should applyUtilitarianism

to all spheres of human activity, including public policy decisions made on behalf of many
individuals. Utilitarianism is a specific kind of consequentialism: the idea that what is right
and wrong is determined by the expected outcomes of an action.

In contrast, Immanuel Kant, in 1785, proposed a theory of rule-based or deontological
ethics, in which “doing the right thing” is determined not by outcomes but by universal socialDeontological ethics

laws that govern allowable actions, such as “don’t lie” or “don’t kill.” Thus, a utilitarian could
tell a white lie if the expected good outweighs the bad, but a Kantian would be bound not to,
because lying is inherently wrong. Mill acknowledged the value of rules, but understood them
as efficient decision procedures compiled from first-principles reasoning about consequences.
Many modern AI systems adopt exactly this approach.

1.2.2 Mathematics

• What are the formal rules to draw valid conclusions?
• What can be computed?
• How do we reason with uncertain information?

Philosophers staked out some of the fundamental ideas of AI, but the leap to a formal science
required the mathematization of logic and probability and the introduction of a new branch
of mathematics: computation.

The idea of formal logic can be traced back to the philosophers of ancient Greece, India,Formal logic

and China, but its mathematical development really began with the work of George Boole
(1815–1864), who worked out the details of propositional, or Boolean, logic (Boole, 1847).
In 1879, Gottlob Frege (1848–1925) extended Boole’s logic to include objects and relations,
creating the first-order logic that is used today.5 In addition to its central role in the early pe-
riod of AI research, first-order logic motivated the work of Gödel and Turing that underpinned
computation itself, as we explain below.

The theory of probability can be seen as generalizing logic to situations with uncertainProbability

information—a consideration of great importance for AI. Gerolamo Cardano (1501–1576)
first framed the idea of probability, describing it in terms of the possible outcomes of gam-
bling events. In 1654, Blaise Pascal (1623–1662), in a letter to Pierre Fermat (1601–1665),
showed how to predict the future of an unfinished gambling game and assign average pay-
offs to the gamblers. Probability quickly became an invaluable part of the quantitative sci-
ences, helping to deal with uncertain measurements and incomplete theories. Jacob Bernoulli
(1654–1705, uncle of Daniel), Pierre Laplace (1749–1827), and others advanced the theory
and introduced new statistical methods. Thomas Bayes (1702–1761) proposed a rule for up-
dating probabilities in the light of new evidence; Bayes’ rule is a crucial tool for AI systems.

The formalization of probability, combined with the availability of data, led to the emer-
gence of statistics as a field. One of the first uses was John Graunt’s analysis of Lon-Statistics

5 Frege’s proposed notation for first-order logic—an arcane combination of textual and geometric features—
never became popular.
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don census data in 1662. Ronald Fisher is considered the first modern statistician (Fisher,
1922). He brought together the ideas of probability, experiment design, analysis of data, and
computing—in 1919, he insisted that he couldn’t do his work without a mechanical calculator
called the MILLIONAIRE (the first calculator that could do multiplication), even though the
cost of the calculator was more than his annual salary (Ross, 2012).

The history of computation is as old as the history of numbers, but the first nontrivial
algorithm is thought to be Euclid’s algorithm for computing greatest common divisors. The Algorithm

word algorithm comes from Muhammad ibn Musa al-Khwarizmi, a 9th century mathemati-
cian, whose writings also introduced Arabic numerals and algebra to Europe. Boole and
others discussed algorithms for logical deduction, and, by the late 19th century, efforts were
under way to formalize general mathematical reasoning as logical deduction.

Kurt Gödel (1906–1978) showed that there exists an effective procedure to prove any true
statement in the first-order logic of Frege and Russell, but that first-order logic could not cap-
ture the principle of mathematical induction needed to characterize the natural numbers. In
1931, Gödel showed that limits on deduction do exist. His incompleteness theorem showed Incompleteness

theorem
that in any formal theory as strong as Peano arithmetic (the elementary theory of natural
numbers), there are necessarily true statements that have no proof within the theory.

This fundamental result can also be interpreted as showing that some functions on the
integers cannot be represented by an algorithm—that is, they cannot be computed. This
motivated Alan Turing (1912–1954) to try to characterize exactly which functions are com-
putable—capable of being computed by an effective procedure. The Church–Turing thesis Computability

proposes to identify the general notion of computability with functions computed by a Turing
machine (Turing, 1936). Turing also showed that there were some functions that no Turing
machine can compute. For example, no machine can tell in general whether a given program
will return an answer on a given input or run forever.

Although computability is important to an understanding of computation, the notion of
tractability has had an even greater impact on AI. Roughly speaking, a problem is called Tractability

intractable if the time required to solve instances of the problem grows exponentially with
the size of the instances. The distinction between polynomial and exponential growth in
complexity was first emphasized in the mid-1960s (Cobham, 1964; Edmonds, 1965). It is
important because exponential growth means that even moderately large instances cannot be
solved in any reasonable time.

The theory of NP-completeness, pioneered by Cook (1971) and Karp (1972), provides a NP-completeness

basis for analyzing the tractability of problems: any problem class to which the class of NP-
complete problems can be reduced is likely to be intractable. (Although it has not been proved
that NP-complete problems are necessarily intractable, most theoreticians believe it.) These
results contrast with the optimism with which the popular press greeted the first computers—
“Electronic Super-Brains” that were “Faster than Einstein!” Despite the increasing speed of
computers, careful use of resources and necessary imperfection will characterize intelligent
systems. Put crudely, the world is an extremely large problem instance!

1.2.3 Economics

• How should we make decisions in accordance with our preferences?
• How should we do this when others may not go along?
• How should we do this when the payoff may be far in the future?
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The science of economics originated in 1776, when Adam Smith (1723–1790) published An
Inquiry into the Nature and Causes of the Wealth of Nations. Smith proposed to analyze
economies as consisting of many individual agents attending to their own interests. Smith
was not, however, advocating financial greed as a moral position: his earlier (1759) book The
Theory of Moral Sentiments begins by pointing out that concern for the well-being of others
is an essential component of the interests of every individual.

Most people think of economics as being about money, and indeed the first mathemati-
cal analysis of decisions under uncertainty, the maximum-expected-value formula of Arnauld
(1662), dealt with the monetary value of bets. Daniel Bernoulli (1738) noticed that this for-
mula didn’t seem to work well for larger amounts of money, such as investments in maritime
trading expeditions. He proposed instead a principle based on maximization of expected
utility, and explained human investment choices by proposing that the marginal utility of an
additional quantity of money diminished as one acquired more money.

Léon Walras (pronounced “Valrasse”) (1834–1910) gave utility theory a more general
foundation in terms of preferences between gambles on any outcomes (not just monetary
outcomes). The theory was improved by Ramsey (1931) and later by John von Neumann
and Oskar Morgenstern in their book The Theory of Games and Economic Behavior (1944).
Economics is no longer the study of money; rather it is the study of desires and preferences.

Decision theory, which combines probability theory with utility theory, provides a for-Decision theory

mal and complete framework for individual decisions (economic or otherwise) made under
uncertainty—that is, in cases where probabilistic descriptions appropriately capture the de-
cision maker’s environment. This is suitable for “large” economies where each agent need
pay no attention to the actions of other agents as individuals. For “small” economies, the
situation is much more like a game: the actions of one player can significantly affect the
utility of another (either positively or negatively). Von Neumann and Morgenstern’s develop-
ment of game theory (see also Luce and Raiffa, 1957) included the surprising result that, for
some games, a rational agent should adopt policies that are (or least appear to be) random-
ized. Unlike decision theory, game theory does not offer an unambiguous prescription for
selecting actions. In AI, decisions involving multiple agents are studied under the heading of
multiagent systems (Chapter 17).

Economists, with some exceptions, did not address the third question listed above: how to
make rational decisions when payoffs from actions are not immediate but instead result from
several actions taken in sequence. This topic was pursued in the field of operations research,Operations research

which emerged in World War II from efforts in Britain to optimize radar installations, and later
found innumerable civilian applications. The work of Richard Bellman (1957) formalized a
class of sequential decision problems called Markov decision processes, which we study in
Chapter 16 and, under the heading of reinforcement learning, in Chapter 23.

Work in economics and operations research has contributed much to our notion of rational
agents, yet for many years AI research developed along entirely separate paths. One reason
was the apparent complexity of making rational decisions. The pioneering AI researcher
Herbert Simon (1916–2001) won the Nobel Prize in economics in 1978 for his early work
showing that models based on satisficing—making decisions that are “good enough,” ratherSatisficing

than laboriously calculating an optimal decision—gave a better description of actual human
behavior (Simon, 1947). Since the 1990s, there has been a resurgence of interest in decision-
theoretic techniques for AI.
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1.2.4 Neuroscience

• How do brains process information?

Neuroscience is the study of the nervous system, particularly the brain. Although the exact Neuroscience

way in which the brain enables thought is one of the great mysteries of science, the fact that it
does enable thought has been appreciated for thousands of years because of the evidence that
strong blows to the head can lead to mental incapacitation. It has also long been known that
human brains are somehow different; in about 335 BCE Aristotle wrote, “Of all the animals,
man has the largest brain in proportion to his size.”6 Still, it was not until the middle of the
18th century that the brain was widely recognized as the seat of consciousness. Before then,
candidate locations included the heart and the spleen.

Paul Broca’s (1824–1880) investigation of aphasia (speech deficit) in brain-damaged pa-
tients in 1861 initiated the study of the brain’s functional organization by identifying a lo-
calized area in the left hemisphere—now called Broca’s area—that is responsible for speech
production.7 By that time, it was known that the brain consisted largely of nerve cells, or neu-
rons, but it was not until 1873 that Camillo Golgi (1843–1926) developed a staining technique Neuron

allowing the observation of individual neurons (see Figure 1.1). This technique was used by
Santiago Ramon y Cajal (1852–1934) in his pioneering studies of neuronal organization.8

It is now widely accepted that cognitive functions result from the electrochemical operation
of these structures. That is, a collection of simple cells can lead to thought, action, and J
consciousness. In the pithy words of John Searle (1992), brains cause minds.

We now have some data on the mapping between areas of the brain and the parts of the
body that they control or from which they receive sensory input. Such mappings are able to
change radically over the course of a few weeks, and some animals seem to have multiple
maps. Moreover, we do not fully understand how other areas can take over functions when
one area is damaged. There is almost no theory on how an individual memory is stored or on
how higher-level cognitive functions operate.

The measurement of intact brain activity began in 1929 with the invention by Hans Berger
of the electroencephalograph (EEG). The development of functional magnetic resonance
imaging (fMRI) (Ogawa et al., 1990; Cabeza and Nyberg, 2001) is giving neuroscientists
unprecedentedly detailed images of brain activity, enabling measurements that correspond in
interesting ways to ongoing cognitive processes. These are augmented by advances in single-
cell electrical recording of neuron activity and by the methods of optogenetics (Crick, 1999; Optogenetics

Zemelman et al., 2002; Han and Boyden, 2007), which allow both measurement and control
of individual neurons modified to be light-sensitive.

The development of brain–machine interfaces (Lebedev and Nicolelis, 2006) for both Brain–machine
interface

sensing and motor control not only promises to restore function to disabled individuals, but
also sheds light on many aspects of neural systems. A remarkable finding from this work is
that the brain is able to adjust itself to interface successfully with an external device, treating
it in effect like another sensory organ or limb.

6 It has since been discovered that the tree shrew and some bird species exceed the human brain/body ratio.
7 Many cite Alexander Hood (1824) as a possible prior source.
8 Golgi persisted in his belief that the brain’s functions were carried out primarily in a continuous medium in
which neurons were embedded, whereas Cajal propounded the “neuronal doctrine.” The two shared the Nobel
Prize in 1906 but gave mutually antagonistic acceptance speeches.
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Figure 1.1 The parts of a nerve cell or neuron. Each neuron consists of a cell body, or soma,
that contains a cell nucleus. Branching out from the cell body are a number of fibers called
dendrites and a single long fiber called the axon. The axon stretches out for a long distance,
much longer than the scale in this diagram indicates. Typically, an axon is 1 cm long (100
times the diameter of the cell body), but can reach up to 1 meter. A neuron makes connec-
tions with 10 to 100,000 other neurons at junctions called synapses. Signals are propagated
from neuron to neuron by a complicated electrochemical reaction. The signals control brain
activity in the short term and also enable long-term changes in the connectivity of neurons.
These mechanisms are thought to form the basis for learning in the brain. Most information
processing goes on in the cerebral cortex, the outer layer of the brain. The basic organi-
zational unit appears to be a column of tissue about 0.5 mm in diameter, containing about
20,000 neurons and extending the full depth of the cortex (about 4 mm in humans).

Brains and digital computers have somewhat different properties. Figure 1.2 shows that
computers have a cycle time that is a million times faster than a brain. The brain makes up
for that with far more storage and interconnection than even a high-end personal computer,
although the largest supercomputers match the brain on some metrics. Futurists make much
of these numbers, pointing to an approaching singularity at which computers reach a su-Singularity

perhuman level of performance (Vinge, 1993; Kurzweil, 2005; Doctorow and Stross, 2012),
and then rapidly improve themselves even further. But the comparisons of raw numbers are
not especially informative. Even with a computer of virtually unlimited capacity, we still re-
quire further conceptual breakthroughs in our understanding of intelligence (see Chapter 29).
Crudely put, without the right theory, faster machines just give you the wrong answer faster.

1.2.5 Psychology

• How do humans and animals think and act?

The origins of scientific psychology are usually traced to the work of the German physi-
cist Hermann von Helmholtz (1821–1894) and his student Wilhelm Wundt (1832–1920).
Helmholtz applied the scientific method to the study of human vision, and his Handbook of
Physiological Optics has been described as “the single most important treatise on the physics
and physiology of human vision” (Nalwa, 1993, p.15). In 1879, Wundt opened the first labo-
ratory of experimental psychology, at the University of Leipzig. Wundt insisted on carefully




